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Entropy and optimal partition for data analysis
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Abstract. The concept of symbolic dynamics, entropy and complexity measures has been widely utilized
for the analysis of measured time series. However, little attention as been devoted to investigate the effects
of choosing different partitions to obtain the coarse-grained symbolic sequences. Because the theoretical
concepts of generating partitions mostly fail in the case of empirical data, one commonly introduces a
homogeneous partition which ensures roughly equidistributed symbols. We will show that such a choice
may lead to spurious results for the estimated entropy and will not fully reveal the randomness of the
sequence.

PACS. 05.45.Tp Time series analysis

1 Introduction

Empirical and experimental work usually consists to a
great deal in acquiring records of real numbers. The main
task then is to extract the features of the investigated
system from that time series and, hopefully, be able to
take a glance at the laws which governs them. One com-
monly used method for this purpose is the concept of
symbolic dynamics. The basic idea is to convert the mea-
sured time series into a corresponding sequence of symbols
and thus giving a symbolic representation of the investi-
gated system. Concepts to analyze such sequences were
already given 1951 by C. Shannon in his seminal paper
“Predictions and Entropy of Printed English”. Since then,
Shannon’s approach was applied to a wide range of top-
ics, including biosequences and many other information
carriers [1–6].

In the first section we will give a brief introduction to
the concepts of symbol sequence analysis. In the second
section we will review the application of these concepts to
scalar time series. One common approach is to introduce a
coarse-grained description of the sequence by partitioning
the continuous phase space into a finite number of cells.
We will discuss the application of these concepts, using
the logistic map as a well known example. In particular we
will investigate the effects of using different partitions and
compare the results to earlier obtained theoretical values.

Finally we will apply these methods to the analysis of
neural spike trains, going back to measurements of Rapp
et al. [6]. For this purpose we need to consider the system-
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atic bias and finite length effects in our entropy approx-
imations. The validity of the results will be tested using
ensembles of surrogate sequences.

2 The Shannon n-gram entropies

Let S be a sequence of length N composed of symbols
(letters) from a finite alphabet of λ letters. Substrings
of n letters are termed n-words or n-blocks. Assuming
stationarity, any n-word i is expected to occur with the
well-defined probability p

(n)
i at any arbitrary site in the

sequence. Following Shannon, the block entropies of words
of length n (n-gram entropies) are given by

Hn = −
∑

p
(n)
i log p(n)

i . (1)

The summation has to be carried out over all words with
p

(n)
i > 0. The entropies Hn measure the amount of in-

formation contained in a word of length n or, equiva-
lently, the average information necessary to predict a sub-
sequence of length n. Thus one may introduce the condi-
tional entropies hn as the average information necessary
to predict the next symbol, given the preceding n sym-
bols, by

hn = Hn+1 −Hn. (2)

The definition of the hn is supplemented by h0 := H1.
Note that the interpretation of the conditional entropies
hn implies the inequality

hn+1 ≤ hn. (3)
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A quantity of particular interest is the entropy of the
source defined as the limit of the conditional entropies
hn for large n.

h := lim
n→∞

hn = lim
n→∞

Hn

n
· (4)

The limit entropy h (or Kolmogorov-Sinai entropy) is the
average amount of information necessary to predict the
next symbol when being informed about the complete pre-
history of the system. Since a positive Kolmogorov-Sinai
entropy implies the existence of a positive Lyapunov ex-
ponent, it is an important measure of chaos. The speed
of convergence of the differential entropies to their limit h
can be taken as a measure of correlations [7–9].

3 Entropy analysis of scalar time series

A direct application of the entropy concept requires a sym-
bolic representation of the real value data xt.

This is achieved by introducing a (finite) partition P ,
which divides the full continuous phase-space Γ into λ
disjoint sets. Each set is labelled with a symbol (or letter)
Ai out of the alphabet A. The resulting symbol sequence
now gives a coarse-grained description of the time evolu-
tion of the dynamical system. Applying the concepts of
the first section on the symbolic sequences one gets the
conditional entropies hn(P ) with respect to the partition
P . In the case of deterministic and time-discrete systems
f : Rm → Rm each n-word identifies a region Γn in phase-
space,

Γn = A1 ∩ f−1(A2) ∩ . . . ∩ f−(n−1)(An) (5)

with f−(i−1)(Ai) denoting the (i− 1)th backward iterate
of the partition corresponding to the ith letter. For an ap-
propriate choice of the partition the region Γn is supposed
to shrink further and further for increasing n (dynamical
refinement). The Kolmogorov-Sinai entropy h is given by
the limit of the conditional entropies hn(P ) for finer and
finer partitions or equivalently, as the supremum over all
possible partitions P

h = sup
{P}

lim
n→∞

hn(P ). (6)

For a generating partition Pg the limit for finer and finer
partitions may be avoided. A partition is called generat-
ing if the dynamical refinement for increasing n divides
the phase space into arbitrarily fine regions, that is each
(infinite) symbol sequence corresponds to an individual
point in phase-space. In this case the mapping between
the (infinite) symbolic sequence and the (infinite) scalar
time series is unique.

Even though generating partitions are known for sev-
eral systems [10], in most cases a direct application of
these concepts fails due to the obstacle of constructing
such a partition for a given system. For practical pur-
poses we will simply define the best partition as the the
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Fig. 1. The conditional entropies h0 to h10 for the logistic map
at r = 3.95 in descending order as a function of the thresh-
old parameter c and sequence length N = 100 000. The dot-
ted values indicate the conditional entropy h10 calculated with
N = 1000.

partition that most effectively reveals the randomness of
the original data as already suggested in [6].

However we shall note the relationship of Kolmogorov-
Sinai entropy h to the Lyapunov exponents λ. In most
cases h is equal to the sum of positive Lyapunov exponents
λ+ (Pesin identity).

h =
∑

λ+
i . (7)

4 The logistic map

As perhaps one of the best studied system in nonlinear
dynamics, the logistic map needs no special introduction.

xn+1 = f(xn) = rxn(1− xn) r ∈ [0, 4]. (8)

We will use it to exemplify the concept of a coarse grained
description and will benefit from the fact that most prop-
erties are known analytically. A generating partition is
given by the critical point c = 0.5.

xn ∈ [0, c]→ Sn = 0 xn ∈ (c, 1]→ Sn = 1. (9)

The resulting symbolic dynamics at the period accumu-
lation point r∞ = 3.5699... has already been studied in
detail by several authors [11]. Now we neglect our knowl-
edge of the generating partition and estimate the condi-
tional entropies hn for c ∈ [0, 1] and r = 3.95. As expected
and already observed in [12] the higher order entropies at-
tain their maximal value for a partition with c = 0.5 (see
Fig. 1). With respect to the maximum entropy we will call
this an optimal binary partition. As observed in Figure 1
the accuracy of the estimated entropies hn is seriously af-
fected by systematic errors due to the finite length N of
the sequence. How these difficulties can be dealt with has
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Fig. 2. The conditional entropies h0, h1, h5 and h10 (from
above) and the Lyapunov exponent λ (lowest curve) versus
parameter r.

already been investigated in previous work [3]. Note that
for increasing n the conditional entropies hn converge to-
wards the positive Lyapunov exponent λ+. In Figure 2
this is visualized by plotting hn for increasing n versus
parameter r [13].

5 The analysis of neural spike trains

As an application we will discuss time series obtained from
interspike interval trains, going back to measurements of
Rapp et al. [6]. The data consists of seven single-unit
records of length N = 1000 obtained from cortical neu-
rons of a rat before and after the application of penicillin.
All data was mapped on binary symbol sequences depen-
dent on the threshold parameter c. Instead of plotting
the conditional entropies hn versus the threshold param-
eter we switch to the corresponding symbol probability.
This will yield a certain invariance to simple data trans-
formations like f(x) = x

√
|x|. Starting with neuron 1 be-

fore penicillin treatment one observes that the estimated
conditional entropies hn are strongly dependent on the
choice of the binary partition (see Fig. 3). After the ap-
plication of penicillin the observed structure has vanished
as seen in Figure 4. The entropy plot looks very much
like that of a random sequence. We shall note however
that this is no systematic feature before and after peni-
cillin treatment but could also be found vice versa (see
Tab. 1). Before we proceed we should stress two points. By
maximizing the conditional entropy of a binary sequence
with respect to the partition threshold c we do not meet
Kolmogorov’s criterion for the supremum of the condi-
tional entropies for all possible partitions Secondly, we do
not claim that these estimated entropies should tend to-
wards the sum of positive Lyapunov exponents. What we
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Fig. 3. Neuron 1 before penicillin treatment: The conditional
entropies h0 to h7 in descending order as a function of the
symbol ‘0’ probability p.
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Fig. 4. Neuron 1 after penicillin treatment: The conditional
entropies h0 to h7 in descending order as a function of the
symbol ‘0’ probability p.

aim at are simple rules about how the choice of a par-
tition should be performed to most effectively reveal the
structure of a given sequence.

5.1 Finite size effects and surrogate sequences

The approximation of the Kolmogorov-Sinai entropy re-
quires to consider longer and longer words. However, on
experimental data, this is limited due to finite length ef-
fect. Therefore the optimal partition should maximize hn
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Table 1. The conditional entropies hn before and after penicillin treatment, denoted as (before→ after) for all seven investigated
neurons. The entropy was estimated for a binary partition with respect to h3 being maximal. The first row denotes the symbol
‘0’ probability p corresponding to the threshold parameter.

Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7

p 0.63 → 0.52 0.53 → 0.52 0.48 → 0.47 0.5 → 0.48 0.37 → 0.49 0.64 → 0.61 0.43 → 0.54

h0 0.95 → 1.00 1.00 → 1.00 1.00 → 1.00 1.00 → 1.00 0.95 → 1.00 0.94 → 0.96 0.99 → 1.00

h1 0.90 → 1.00 1.00 → 1.00 1.00 → 0.97 1.00 → 1.00 0.89 → 1.00 0.88 → 0.92 0.95 → 0.99

h2 0.88 → 0.99 0.99 → 0.99 0.98 → 0.97 1.00 → 0.99 0.86 → 0.99 0.86 → 0.89 0.95 → 0.99

h3 0.87 → 0.98 0.99 → 0.99 0.97 → 0.97 1.00 → 0.99 0.85 → 0.99 0.83 → 0.88 0.95 → 0.99

h4 0.86 → 0.97 0.99 → 0.99 0.96 → 0.96 1.00 → 0.98 0.85 → 0.98 0.83 → 0.88 0.95 → 0.98
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Fig. 5. The conditional entropy of neuron 1 before penicillin
treatment and corresponding surrogate sequences in the case
of an optimal binary partition

for a large, but finite, word length n+1. Large means here
as large as possible with small finite length effects.

In order to deal with the finite length effects, we built
for each partition a series of ensembles of surrogate se-
quences with the identical length as the original data. The
sequences of the series m = 0, 1, . . . were constructed by
a Markovian process with memory m having the same
transition probabilities p(Am+1|Am, . . . , A1) as the orig-
inal sequence. That means the sequences of order m = 0
are Bernoulli sequences with the same mean symbol fre-
quencies as the original sequence. The first order surrogate
sequence m = 1 corresponds to a first order Markov pro-
cess with the the same transition probabilities as the orig-
inal sequence. In Figures 5 and 6 the conditional entropies
hn of the original and surrogate sequences for two differ-
ent partitions are shown. The errorbars show the standard
deviations of the surrogate ensembles. The deviations are
due to finite size effects. We used that particular param-
eter m as the value for optimizing the partition, where
the conditional entropies of the original sequence were the
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Fig. 6. The conditional entropy of neuron 1 before penicillin
treatment and corresponding surrogate sequences, partitioned
with equal symbol frequency.

first time within the confidence intervals of the surrogate
sequences having a memory of m. Hence, in the concrete
case h3 was used for finding the optimal partition.

6 Conclusion

When applying the concepts of symbolic dynamics to mea-
sured time series special diligence should be devoted to
the choice of the partition. As we have demonstrated a
homogeneous partition might lead to spurious results for
the estimated conditional entropies. We therefore suggest
to maximize the entropies given a certain length of the
alphabet. This method is easily generalized to three or
more symbols. What has yet to be considered is the com-
parability of entropies stemming from different encodings
with increasing alphabet length. Still, choosing the parti-
tion according to a maximized entropy gives a better tool
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to differentiate sequences than the usually used homoge-
neous partition.

This work was supported by the DFG (Sfb 555 - Project A5).
M.A. J.-M. thanks CONACyT (Project 32201-E) for partial
support.

References

1. C. Shannon, Bell Systems Tech. 30, 50 (1951).
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